Matrix commutators: their asymptotic metric properties and relation to approximate joint diagonalization
نویسندگان
چکیده
We analyze the properties of the norm of the commutator of two Hermitian matrices, showing that asymptotically it behaves like a metric, and establish its relation to joint approximate diagonalization of matrices, showing that almost-commuting matrices are almost jointly diagonalizable, and vice versa. We show an application of our results in the field of 3D shape analysis.
منابع مشابه
Almost-commuting matrices are almost jointly diagonalizable
We study the relation between approximate joint diagonalization of self-adjoint matrices and the norm of their commutator, and show that almost commuting self-adjoint matrices are almost jointly diagonalizable by a unitary matrix.
متن کاملApproximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices
We explore the connection between two problems that have arisen independently in the signal processing and related fields: the estimation of the geometric mean of a set of symmetric positive definite (SPD) matrices and their approximate joint diagonalization (AJD). Today there is a considerable interest in estimating the geometric mean of a SPD matrix set in the manifold of SPD matrices endowed...
متن کاملBlind source separation of convolved sources by joint approximate diagonalization of cross-spectral density matrices
In this paper we present a new method for separating non-stationary sources from their convolutive mixtures based on approximate joint diagonalizing of the observed signals’ cross-spectral density matrices. Several blind source separation (BSS) algorithms have been proposed which use approximate joint diagonalization of a set of scalar matrices to estimate the instantaneous mixing matrix. We ex...
متن کاملNewton Method for Joint Approximate Diagonalization of Positive Definite Hermitian Matrices
In this paper we present a Newton method to jointly approximately diagonalize a set of positive definite Hermitian matrices. To this end, we derive the local gradient and Hessian of the underlying cost function in closed form. The algorithm is derived for the complex case and can also update a non-square diagonalization matrix. We analyze the cost function at the critical points and show its re...
متن کاملA Novel DOA Estimation Approach for Unknown Coherent Source Groups with Coherent Signals
In this paper, a new combination of Minimum Description Length (MDL) or Eigenvalue Gradient Method (EGM), Joint Approximate Diagonalization of Eigenmatrices (JADE) and Modified Forward-Backward Linear Prediction (MFBLP) algorithms is proposed which determines the number of non-coherent source groups and estimates the Direction Of Arrivals (DOAs) of coherent signals in each group. First, the MDL...
متن کامل